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Introduction

Vision-Language Pre-training

Goal: develop AI systems that can understand and reason about visual concepts
and language in an interconnected way.
Various downstream vision-language tasks:

▶ text generation (i.e. image captioning, visual question answering)
▶ image generation (i.e. style transfer)
▶ image analysis (i.e. segmentation)
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Introduction

Model and Architecture

Architecture: Transformer, ViT

Model

Figure 1: Four categories of vision-and-language models.1

It turns out that (c) is the best!

Other tricks: Mixture of Experts (MoE)2

1Wonjae Kim, Bokyung Son, and Ildoo Kim. “Vilt: Vision-and-language transformer without convolution or region supervision”. In:
International Conference on Machine Learning. PMLR. 2021, pp. 5583–5594.

2Robert A Jacobs et al. “Adaptive mixtures of local experts”. In: Neural computation 3.1 (1991), pp. 79–87.

Pu Yang Data Filtering in Vision-Language Pre-training 2023.10.18 6 / 27



Introduction

Model and Architecture

An example:

Figure 2: The architecture of CogVLM. https://github.com/THUDM/CogVLM
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Introduction

Task and Objective Function

Image-text contrastive (ITC): CLIP

Object detection (OD): ViLBERT, UNITER

Image-text matching (ITM): ViLBERT, UNITER, ViLT

Mask language modeling (MLM): BERT

Predict the next word token: GPT

Recent methods prefer the task of predicting the next token!
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Introduction

Task and Objective Function

An example:

Figure 3: Emu unifies the modeling of different modalities in an auto-regressive manner.3

3Quan Sun et al. “Generative pretraining in multimodality”. In: arXiv preprint arXiv:2307.05222 (2023).
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Introduction

Data

Data mining - Discovering and extracting new image-text data from multimodal
sources like the web, books, social media etc.

Data filtering - Developing robust methods to clean noisy web data and retain
useful training examples.

Data augmentation - Techniques like text and image augmentation and synthesis
to increase diversity and generalizability.

Balanced sampling - Strategies to ensure models see diverse, representative data
and avoid biases.
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Introduction

Training Strategy

Multi-stage

End-to-end

An example:

Figure 4: The training pipeline of the Qwen-VL series.4

4Jinze Bai et al. “Qwen-vl: A frontier large vision-language model with versatile abilities”. In: arXiv preprint arXiv:2308.12966 (2023).
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Data filtering Momentum Distillation

Align before Fuse (ALBEF)

Figure 5: Illustration of ALBEF.5

5Junnan Li et al. “Align before fuse: Vision and language representation learning with momentum distillation”. In:
Advances in neural information processing systems 34 (2021), pp. 9694–9705.

Pu Yang Data Filtering in Vision-Language Pre-training 2023.10.18 13 / 27



Data filtering Momentum Distillation

Pre-training Objectives

Image-Text Contrastive Learning (the same as Moco)
Let gI and gT are linear transformations that map the [CLS] embeddings to
normalized representations, and g′I and g′T are representations from the
momentum encoders. We define the similarity

s(I, T ) = g⊤I · g′T , s(T, I) = g⊤T · g′I

and the softmax-normalized similarity

pi2tm (I) =
exp (s (I, Tm) /τ)∑M

m=1 exp (s (I, Tm) /τ)
, pt2im (T ) =

exp (s (T, Im) /τ)∑M
m=1 exp (s (T, Im) /τ)

Thus, the loss function is

Litc =
1

2
E(I,T )∼D[H(yi2t(I),pi2t(I)) +H(yt2i(T ),pt2i(T ))]

where y is the ground-truth one-hot similarity, and H denotes the cross-entropy.
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Data filtering Momentum Distillation

Pre-training Objectives

Masked Language Modeling (same as BERT)

Lmlm = E(I,T̂ )∼DH(ymsk,pmsk(I, T̂ ))

where T̂ denotes a masked text, and pmsk(I, T̂ ) denotes the model’s predicted
probability for a masked token.

Image-Text Matching (same as binary classification)

Litm =
1

2
E(I,T )∼DH(yitm,pitm(I, T ))

where pitm(I, T ) is the predicted two-class probability.
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Data filtering Momentum Distillation

The image-text pairs are noisy

Positive pairs are usually weakly-correlated

For ITC: negative texts for an image may also match the image’s content.

For MLM, there may exist other words different from the annotation that describes
the image equally well (or better).
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Data filtering Momentum Distillation

Momentum Distillation (MoD)

Learn from pseudo-targets generated by the momentum model.

For ITC, We use the similarity from the momentum model

s′(I, T ) = g′⊤I · g′T , s′(T, I) = g′⊤T · g′I

and the momentum model’s softmax-normalized similarity

qi2tm (I) =
exp (s′ (I, Tm) /τ)∑M

m=1 exp (s
′ (I, Tm) /τ)

, qt2im (T ) =
exp (s′ (T, Im) /τ)∑M

m=1 exp (s
′ (T, Im) /τ)

Thus, the loss function is

Lmod
itc = (1− α)Litc +

α

2
E(I,T )∼D[KL(qi2t(I)) || pi2t(I) + KL(qt2i(T )) || pt2i(T )]
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Data filtering Momentum Distillation

For MLM

Lmod
mlm = (1− α)Lmlm + αE(I,T̂ )∼DKL(qmsk(I, T̂ ) || pmsk(I, T̂ ))

where qmsk(I, T̂ ) denotes the momentum model’s prediction probability for the
masked token.

The author sets α = 0.4.
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Data filtering Momentum Distillation

Illustration

Figure 6: : Examples of the pseudo-targets for MLM (1st row) and ITC (2nd row). The
pseudo-targets can capture visual concepts that are not described by the ground-truth text (e.g.
“beautiful waterfall”, “young woman”).
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Data filtering Momentum Distillation

Experiments on the proposed methods

Three main improvements:

Objective function

Larger dataset

MoD
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Data filtering Caption-Filtering

Bootstrapping Language-Image Pre-training (BLIP)

Figure 7: Illustration of BLIP.6

6Junnan Li et al. “Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation”. In:
International Conference on Machine Learning. PMLR. 2022, pp. 12888–12900.
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Data filtering Caption-Filtering

Dataset

a limited number of high-quality human-annotated image-text pairs {(Ih, Th)},
e.g., COCO 200K

a much larger number of image and alt-text pairs collected from the web
{(Iw, Tw)}, e.g. Conceptual Captions 12M, LAION 115M
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Data filtering Caption-Filtering

Bootstrapping: Captioning and Filtering (CapFilt)

Figure 8: Learning framework of BLIP.

Captioner is an image-grounded text decoder which generates synthetic captions
given web images.

Filter is an image-grounded text encoder which removes noisy image-text pairs.
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Data filtering Caption-Filtering

Illustration

Figure 9: Examples of the web text Tw and the synthetic text Ts. Green texts are accepted by the
filter, whereas red texts are rejected.
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Data filtering Caption-Filtering

Experiments
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Data filtering Caption-Filtering

Other Applications

Generate synthetic caption for image data without text
https://lambdalabs.com/blog/
how-to-fine-tune-stable-diffusion-how-we-made-the-text-to-pokemon-model-at-lambda
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Summary

Summary

Key idea: leverage self-supervision signals or contrastive learning to identify low
quality or noisy samples and filter them out or reduce their impact during pre-training.
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