Data Filtering in Vision-Language Pre-training

Pu Yang School of Mathematical Sciences, Peking University

2023.10.18

Table of contents

- Introduction
- Data filtering
 - Momentum Distillation
 - Caption-Filtering
- Summary

Introduction

- Data filtering
 - Momentum Distillation
 - Caption-Filtering

Summary

Vision-Language Pre-training

- Goal: develop AI systems that can understand and reason about visual concepts and language in an interconnected way.
- Various downstream vision-language tasks:
 - text generation (i.e. image captioning, visual question answering)
 - image generation (i.e. style transfer)
 - image analysis (i.e. segmentation)

Main Research Directions

- Model and Architecture
- Task and Objective Function
- Data
- Training Strategy

Model and Architecture

- Architecture: Transformer, ViT
- Model

Figure 1: Four categories of vision-and-language models.¹

It turns out that (c) is the best!

Other tricks: Mixture of Experts (MoE)²

¹Wonjae Kim, Bokyung Son, and Ildoo Kim. "Vilt: Vision-and-language transformer without convolution or region supervision". In: International Conference on Machine Learning. PMLR. 2021, pp. 5583–5594.

² Robert A Jacobs et al. "Adaptive mixtures of local experts". In: Neural computation 3.1 (1991), pp. 79–87. New A D N

Model and Architecture

An example:

Figure 2: The architecture of CogVLM. https://github.com/THUDM/CogVLM

Task and Objective Function

- Image-text contrastive (ITC): CLIP
- Object detection (OD): ViLBERT, UNITER
- Image-text matching (ITM): ViLBERT, UNITER, ViLT
- Mask language modeling (MLM): BERT
- Predict the next word token: GPT

Recent methods prefer the task of predicting the next token!

Task and Objective Function

An example:

Figure 3: Emu unifies the modeling of different modalities in an auto-regressive manner.³

Data

- Data mining Discovering and extracting new image-text data from multimodal sources like the web, books, social media etc.
- Data filtering Developing robust methods to clean noisy web data and retain useful training examples.
- Data augmentation Techniques like text and image augmentation and synthesis to increase diversity and generalizability.
- Balanced sampling Strategies to ensure models see diverse, representative data and avoid biases.

Training Strategy

- Multi-stage
- End-to-end

An example:

Figure 4: The training pipeline of the Qwen-VL series.4

⁴ Jinze Bai et al. "Qwen-vl: A frontier large vision-language model with versatile abilities". In: arXiv preprint arXiv:2308.12966 (2028). 🖹 🕨 📜 💉 🔾 🤇

Introduction

- Data filtering
 - Momentum Distillation
 - Caption-Filtering

Summary

Align before Fuse (ALBEF)

Figure 5: Illustration of ALBEF.⁵

⁵ Junnan Li et al. "Align before fuse: Vision and language representation learning with momentum distillation". In:

Advances in neural information processing systems 34 (2021), pp. 9694–9705.

Pre-training Objectives

• Image-Text Contrastive Learning (the same as Moco) Let g_I and g_T are linear transformations that map the [CLS] embeddings to normalized representations, and g_I' and g_T' are representations from the momentum encoders. We define the similarity

$$s(I,T) = g_I^\top \cdot g_T', \quad s(T,I) = g_T^\top \cdot g_I'$$

and the softmax-normalized similarity

$$p_{m}^{\text{i2t}}(I) = \frac{\exp\left(s\left(I, T_{m}\right) / \tau\right)}{\sum_{m=1}^{M} \exp\left(s\left(I, T_{m}\right) / \tau\right)}, \quad p_{m}^{\text{t2i}}(T) = \frac{\exp\left(s\left(T, I_{m}\right) / \tau\right)}{\sum_{m=1}^{M} \exp\left(s\left(T, I_{m}\right) / \tau\right)}$$

Thus, the loss function is

$$\mathcal{L}_{\text{itc}} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D}[H(\boldsymbol{y}^{\text{i2t}}(I), \boldsymbol{p}^{\text{i2t}}(I)) + H(\boldsymbol{y}^{\text{i2i}}(T), \boldsymbol{p}^{\text{t2i}}(T))]$$

where y is the ground-truth one-hot similarity, and H denotes the cross-entropy.

Pre-training Objectives

Masked Language Modeling (same as BERT)

$$\mathcal{L}_{\mathsf{mlm}} = \mathbb{E}_{(I,\hat{T}) \sim D} H(oldsymbol{y}^{\mathsf{msk}}, oldsymbol{p}^{\mathsf{msk}}(I,\hat{T}))$$

where \hat{T} denotes a masked text, and $p^{\text{msk}}(I,\hat{T})$ denotes the model's predicted probability for a masked token.

• Image-Text Matching (same as binary classification)

$$\mathcal{L}_{\mathsf{itm}} = \frac{1}{2} \mathbb{E}_{(I,T) \sim D} H(\boldsymbol{y}^{\mathsf{itm}}, \boldsymbol{p}^{\mathsf{itm}}(I,T))$$

where $p^{\text{itm}}(I,T)$ is the predicted two-class probability.

The image-text pairs are noisy

Positive pairs are usually weakly-correlated

- For ITC: negative texts for an image may also match the image's content.
- For MLM, there may exist other words different from the annotation that describes the image equally well (or better).

Momentum Distillation (MoD)

Learn from pseudo-targets generated by the momentum model.

For ITC, We use the similarity from the momentum model

$$s'(I,T) = g_I^{\prime \top} \cdot g_T^{\prime}, \quad s'(T,I) = g_T^{\prime \top} \cdot g_I^{\prime}$$

and the momentum model's softmax-normalized similarity

$$q_{m}^{\rm i2t}(I) = \frac{\exp\left(s'\left(I, T_{m}\right) / \tau\right)}{\sum_{m=1}^{M} \exp\left(s'\left(I, T_{m}\right) / \tau\right)}, \quad q_{m}^{\rm t2i}(T) = \frac{\exp\left(s'\left(T, I_{m}\right) / \tau\right)}{\sum_{m=1}^{M} \exp\left(s'\left(T, I_{m}\right) / \tau\right)}$$

Thus, the loss function is

$$\mathcal{L}_{\mathrm{itc}}^{\mathrm{mod}} = (1 - \alpha)\mathcal{L}_{\mathrm{itc}} + \frac{\alpha}{2}\mathbb{E}_{(I,T) \sim D}[\mathsf{KL}(\boldsymbol{q}^{\mathrm{i2t}}(I)) \mid\mid \boldsymbol{p}^{\mathrm{i2t}}(I) + \mathsf{KL}(\boldsymbol{q}^{\mathrm{12i}}(T)) \mid\mid \boldsymbol{p}^{\mathrm{t2i}}(T)]$$

For MLM

$$\mathcal{L}_{\mathsf{mlm}}^{\mathsf{mod}} = (1 - \alpha)\mathcal{L}_{\mathsf{mlm}} + \alpha \mathbb{E}_{(I,\hat{T}) \sim D} \mathsf{KL}(\boldsymbol{q}^{\mathsf{msk}}(I,\hat{T}) \mid\mid \boldsymbol{p}^{\mathsf{msk}}(I,\hat{T}))$$

where ${\pmb q}^{\rm msk}(I,\hat T)$ denotes the momentum model's prediction probability for the masked token.

The author sets $\alpha = 0.4$.

Illustration

Figure 6: Examples of the pseudo-targets for MLM (1st row) and ITC (2nd row). The pseudo-targets can capture visual concepts that are not described by the ground-truth text (e.g. "beautiful waterfall", "young woman").

Experiments on the proposed methods

#Pre-train Images	Training tasks	TR IR (flickr test)		SNLI-VE (test)	NLVR ² (test-P)	VQA (test-dev)
4M	MLM + ITM	93.96	88.55	77.06	77.51	71.40
	ITC + MLM + ITM	96.55	91.69	79.15	79.88	73.29
	$ITC + MLM + ITM_{hard}$	97.01	92.16	79.77	80.35	73.81
	$ITC_{MoD} + MLM + ITM_{hard}$	97.33	92.43	79.99	80.34	74.06
	$Full (ITC_{MoD} + MLM_{MoD} + ITM_{hard})$	97.47	92.58	80.12	80.44	74.42
	ALBEF (Full + MoD _{Downstream})	97.83	92.65	80.30	80.50	74.54
14M	ALBEF	98.70	94.07	80.91	83.14	75.84

Three main improvements:

- Objective function
- Larger dataset
- MoD

Bootstrapping Language-Image Pre-training (BLIP)

Figure 7: Illustration of BLIP.6

⁶Junnan Li et al. "Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation". In: International Conference on Machine Learning, PMLR, 2022, pp. 12888-12900.

Dataset

- a limited number of high-quality human-annotated image-text pairs $\{(I_h,T_h)\}$, e.g., COCO 200K
- a much larger number of image and alt-text pairs collected from the web $\{(I_w,T_w)\}$, e.g. Conceptual Captions 12M, LAION 115M

Bootstrapping: Captioning and Filtering (CapFilt)

Figure 8: Learning framework of BLIP.

- Captioner is an image-grounded text decoder which generates synthetic captions given web images.
- Filter is an image-grounded text encoder which removes noisy image-text pairs.

Illustration

near my house" T_s: "a flock of birds flying over a lake at sunset"

 T_w : "in front of a house door in Reichenfels. Austria" T_s : "a potted plant sitting

T...: "the current castle was built in 1180, replacing a 9th century wooden castle"

 T_s : "a large building with a lot of windows on it"

Figure 9: Examples of the web text T_w and the synthetic text T_s . Green texts are accepted by the filter, whereas red texts are rejected.

Experiments

Pre-train dataset	Boot C	strap F	Vision backbone	Retrieval-I TR@1	FT (COCO) IR@1	Retrieval- TR@1	ZS (Flickr) IR@1	Caption-I B@4	FT (COCO) CIDEr	Caption-2 CIDEr	ZS (NoCaps) SPICE
COCO+VG +CC+SBU (14M imgs)	X X ✓ B ✓ B	X ✓B X ✓B	ViT-B/16	78.4 79.1 79.7 80.6	60.7 61.5 62.0 63.1	93.9 94.1 94.4 94.8	82.1 82.8 83.6 84.9	38.0 38.1 38.4 38.6	127.8 128.2 128.9 129.7	102.2 102.7 103.4 105.1	13.9 14.0 14.2 14.4
COCO+VG +CC+SBU +LAION (129M imgs)	X ✓ _B ✓ _L	X ✓ _B ✓ _L	ViT-B/16	79.6 81.9 81.2	62.0 64.3 64.1	94.3 96.0 96.0	83.6 85.0 85.5	38.8 39.4 39.7	130.1 131.4 133.3	105.4 106.3 109.6	14.2 14.3 14.7
	\checkmark_L	\checkmark_L	ViT-L/16	80.6 82.4	64.1 65.1	95.1 96.7	85.5 86.7	40.3 40.4	135.5 136.7	112.5 113.2	14.7 14.8

Table 1. Evaluation of the effect of the captioner (C) and filter (F) for dataset bootstrapping. Downstream tasks include image-text retrieval and image captioning with finetuning (FT) and zero-shot (ZS) settings. TR / IR@1: recall@1 for text retrieval / image retrieval. $\checkmark_{B/L}$: captioner or filter uses ViT-B / ViT-L as vision backbone.

Other Applications

Generate synthetic caption for image data without text

https://lambdalabs.com/blog/

 $\verb|how-to-fine-tune-stable-diffusion-how-we-made-the-text-to-pok|\\$

Summary

Key idea: leverage **self-supervision signals** or **contrastive learning** to identify low quality or noisy samples and filter them out or reduce their impact during pre-training.

