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Introduction

Introduction: Autoregressive Models (ARMs)

@ Autoregressive models (ARMs) are widely regarded as the cornerstone of large
language models (LLMs).

@ ARMs commonly referred to as the next-token prediction paradigm:

L
pe(l’) = Peo (xl) HPG (ml ‘ xlv s 7:82‘71)7
1=2

Autoregressive formulation

where z is a sequence of length L, and z' is the i-th token
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Limitations of ARMs

@ Computational efficiency

» ARMSs cannot be generated in parallel for inference.
» ARMs exhibits a quadratic computational complexity of order O(n?) due to its
sequential dependence structure.
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Limitations of ARMs

@ Unidirectional nature

» ARMs are not free to choose the location of outputs.
» ARMSs cannot modify what has already been output.

v.s. Turing machine

» Write or erase a symbol on a piece of paper;
» Move the attention from one place on the paper to another.
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Diffusion Models in LLMs

@ Diffusion models in LLMs aim to capture the true data distribution through MLE:

mgax Epyaa (2) 108 po(z) & mein KL (pgata (z)|pe(x)) .

Generative modeling principles

@ Trivial idea: from noise/[MASK] to token.
@ What'’s the benefits?

> generate in parallel for inference

» modify any token

> better computational complexity (?)
L
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Related Work: Diffusion Models in NLP

e Related Work: Diffusion Models in NLP
@ Diffusion-LM
@ Discrete Diffusion Model
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Related Work: Diffusion Models in NLP Diffusion-LM

Diffusion-LM: Continuous Diffusion Language Modeling

Diffusion-LM' defines the diffusion process in a continuous word vector space,
specifically:
@ Discrete to continuous: Map each word to a continuous vector
@ Diffusion: Add continuous noise to these vectors and iteratively denoise them
@ Continuous to discrete: Map continuous vectors to words

Gaussian Noise Denoising Rounding
pext1|xt PHW\XU
—Drn —> —>=
q(x¢ |xt 1) (Iz) X0 \ w)
Noising Embedding

1 Xiang Li et al. “Diffusion-LM Improves Controllable Text Generation”. In: Advances in Neural Information Processing Systems. Vol. 35. Curran
Associates, Inc., 2022, pp. 4328-4343.
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Related Work: Diffusion Models in NLP Diffusion-LM

Controllable Text Generation

Controlling zo.7 is equivalent to decoding from the posterior:

=

p(zor | ) =| | p(xi—1 | 24, ¢)
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p(re—1 | xe) - ple| ze—1,21)
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I
=

p(ﬂft—l | itt) ~p(c ‘ Z’t—l)
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Similar to conditional generation in diffusion models.?

2Yang Song et al. “Score-based generative modeling through stochastic differential equations”. In: arXivpreprintariv:2011:13456 (2020).
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D3PM: Discrete Denoising Diffusion Probabilistic Model®

@ For scalar discrete random variables with K categories, the forward transition
probabilities can be represented by matrices: [Q:]:;; = q(x: = 7 | T—1 = 19).
> Then we get the forward process: q(z+ | zt—1).
» Then we get the reverse process: q(z¢—1 | zt, o).
» Then we get the loss function ...

@ Choice of Markov transition matrices for the forward process, e.g.,

> Uniform: Q; = (1 — 8)I + %MT
» Absorbing state: fully observed text to a sequence of [MASK]**
L

@ Connection to existing probabilistic models for text

» BERT: one-step discrete diffusion
» ARMs: autoregressive discrete diffusion

3Aaron Lou and Stefano Ermon. “Reflected diffusion models”. In: International Conference on Machine Learning. PMLR. 2023, pp. 22675-22701.

4Jingyang Ou et al. “Your absorbing discrete diffusion secretly models the conditional distributions of clean data”. In: arXiv preprint arXiv:2406.03736
(2024).

5Jacob Austin et al. “Structured denoising diffusion models in discrete state-spaces”. In: Advances in neural information processing systems 34 (2021),
pp. 17981-17993.
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Masked Diffusion Models (MDMs) and Its Forward Process

@ Define the model distribution as pg(zo)
@ Introduce a forward process {z} indexed by a time ¢ € [0, 1].

» The data point z is fully observed with no masks.
» The conditional distribution of z; given z¢ is

Qt\o z¢ | 20) = H‘It|0 CUt \ 950

where the conditional distribution for each token is given by:

; ; 1—1t, zi = x}
oot 159 = {17 2 i

Intuitively, each token either remains unchanged or is masked, with the probability of

being masked increasing linearly as .
> Att = 1, all tokens are masked, meaning that z; is a sequence of fully masked tokens
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Reverse Process

@ The reverse process, from time ¢ = 1 to 0, generates new data from sequences
of fully masked tokens.

» The conditional distribution for the reverse process, for0 < s <t < 1,is

L
aopt (s | ze) = [ [ aspe (4 | 2¢)
i=1

where the conditional distribution for each token is:

1, zj # M,z =z}
S . .

o | ) £, zy =M,zt =M
qs|t Tg | XTt) = — 8 . . .

P qo0|t (mzs | xt) ) :l?% = vai #M
0, otherwise

Similar to the data prediction form in continous diffusion models, the key function to
estimate is go|; (% | x+), which predicts the original token if it is masked in the input ;.
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Related Work: Diffusion Models in NLP Discrete Diffusion Model

Parameterization

@ An equivalent yet time-free parameterization can be derived as
i um
qo|t (iUs \ J?t) = pdata(wo | Ty )

where ;rEM denotes the collection of unmasked tokens in x;.

@ We introduce the mask predictor, a parametric model py (- | x+), which takes z;
for any ¢ as input and predict all masked tokens simultaneously.

14/28



Related Work: Diffusion Models in NLP Discrete Diffusion Model

Optimization

@ The mask predictor is trained using a cross-entropy loss computed only on the
masked tokens:

L) 2 —Fy gz, [1 i 1 [xz = [MASK]] log pe (x6 | xt)]

=

where z, is sampled from the training data, ¢ is sampled uniformly from [0, 1], and
x¢ is sampled from the forward process. The indicator function 1[-] ensures that
the loss is computed only for masked tokens.

@ Notice that,
—Epgaa (z0) 108 Do (z0)] < L(6)
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Large Language Diffusion Models

e Large Language Diffusion Models
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LLaDA: Large Language Diffusion with mAsking®

Large Language Diffusion Models

Shen Nie' T Fengqi Zhu'“! Zebin You'’ Xiaolu Zhang?! Jingyang Ou' Jun Hu?! Jun Zhou
Yankai Lin'# Ji-Rong Wen' Chongxuan Li'#%

1 Gaoling School
2 Ant Group

8shen Nie et al. “Large Language Diffusion Models”. In: arXiv preprint arXiv:2502.09992 (2025).
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e age Diffusion Models

Conceptual Overview

(a)  Mask all tokens independently (b) Prompt Response ©) Prompt Response
| XX =17
+ Mask ratio t ~ U(0,1) H e L
X X n=< : ==y x| »
| } : } =
Mask predictor Mask predictor : Mask predictor %
: L3
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[ : e
' Remask ‘o H E g
X Mask token + Remask H !
Non-mask token , Random mask

Figure 2. A Conceptual Overview of LLaDA. (a) Pre-training. LLaDA is trained on text with random masks applied independently to all
tokens at the same ratio ¢ ~ U0, 1]. (b) SFT. Only response tokens are possibly masked. (c) Sampling. LLaDA simulates a diffusion
process from ¢ = 1 (fully masked) to ¢ = 0 (unmasked), predicting all masks simultaneously at each step with flexible remask strategies.
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Large Language Diffusion Models

Architecture and Pre-training

@ LLaDA uses the Transformer without a causal mask
» incompatible with KV caching
@ Some training hyper-parameters:
» Dataset: 2.3T tokens
» Sequence length: 4096
» Computational cost: 0.13M H800 GPU hours for LLaDA-8B (similar to ARMs
(LLaMAS3-8B) of the same scale and dataset size.)
@ For a training sequence zo, randomly sample ¢ € [0, 1], mask each token
independently with the same probability ¢ to obtain z,, and estimate the loss via
Monte Carlo method for diffusion training.
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Large Language Diffusion Models

Supervised Fine-Tuning

@ Instruction tuning with paired data (po, 7o), where po is the prompt and r, denotes
the response with an |EOS| token at the end.

@ Technically, is requires to model the conditional distribution pg(ro | po) instead of
pe(xo) in pre-training.
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Large age Diffusion Models

Inference Trick: Remask

At an intermediate step from time ¢ € (0,1] to s € [0, ), remask % of the predicted
tokens in expectation to obtain the remasked response.
@ Low-confidence remasking: remask the % of predicted tokens with the lowest

confidence based on the predictions
@ Semi-autoregressive remasking: ivide the sequence into several blocks and
generate them from left to right

Prompt Block 0 Block 1 Block 2
> Mask token t=1
]
Non-mask token
PR EOSOSOSOSOSO=O=0=Y
| OSSO
| X X XX
=X

X

Figure 4. A Conceptual Overview of the Semi-autoregressive Sampling,
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e age Diffusion Models

Experiments: Scalability

@ Four models:
» ARM baselines: 1.5B and 7B

» MDMs: 1.5B and 8B

60 -
_ 60 ;\;m::gmswe Bascline _ f Autoregressive Baseline 2 60 ;Aluli;;;gleul\'r: Bascline
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Figure 3. Scalability of LLaDA. We evaluate the performance of LLaDA and our ARM baselines trained on the same data across

increasing computational FLOPs. LLaDA exhibits strong scalability, matching the overall performance of ARM:s on six tasks.
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Large Language Diffusion Models

Experiments: Benchmark of Pre-trained LLMs

| LLaDA 8B* LLaMA38B* LLaMA27B* | Qwen2 7Bf Qwen2.57B" Mistral 7Bf = Deepseek 7BY
Model Diffusion AR AR AR AR AR AR
Training tokens 2.3T 15T 2T 7T 18T - 2T
General Tasks
MMLU 65.9 (5) 65.4(5) 459 (5) 70.3 (5) 74.2(5) 64.2 (5) 48.2(5)
BBH 49.8 (3) 57.6 (3) 37.3(3) 62.3(3) 70.4 (3) 56.1(3) 39.5(3)
ARC-C 47.9 (0) 53.1(0) 46.3 (0) 60.6 (25) 63.7 (25) 60.0 (25) 48.1 (0)
Hellaswag 72.5 (0) 79.1 (0) 76.0 (0) 80.7 (10) 80.2 (10) 83.3(10) 75.4 (0)
Truthful QA 46.4 (0) 44.0 (0) 39.0 (0) 54.2(0) 56.4 (0) 42.2 (0) -
‘WinoGrande 74.8 (5) 77.3 (5) 72.5(5) 77.0 (5) 75.9 (5) 78.4(5) 70.5 (0)
PIQA 74.4 (0) 80.6 (0) 79.1(0) - - - 79.2 (0)
Mathematics & Science
GSMS8K 70.7 (4) 53.1(4) 14.3 (4) 80.2(4) 854 (4) 36.2 (4) 17.4 (8)
Math 273 (4) 15.1 (4) 32(4) 4354) 49.8 (4) 10.2 (4) 6.0 (4)
GPQA 26.1 (5) 25.9(5) 25.7(5) 30.8 (5) 36.4(5) 24.7 (5) -
Code
HumanEval 33.5(0) 34.2 (0) 12.8 (0) 51.2(0) 57.9 (0) 29.3 (0) 26.2 (0)
HumanEval-FIM 73.8 (2) 73.3(2) 26.9 (2) - - - -
MBPP 3824 474 (4) 18.4 (4) 64.2 (0) 74.9 (0) S51.1(0) 39.0(3)
Chinese
CMMLU 69.9 (5) 50.7 (5) 325(5) 83.9(5) - - 472 (5)
C-Eval 70.5 (5) 51.7(5) 34.0(5) 83.2(5) - - 45.0(5)
Large Language Diffusion Models 2025.4.2

23/28



Large Language Diffusion Models

Experiments: Benchmark of Post-trained LLMs

| LLaDA 8B* LLaMA3 8B* LLaMA27B* | Qwen27B' Qwen257B! Gemma2 9B! Deepseck 7B
Model Diffusion AR AR AR AR AR AR
Training tokens 23T 15T 2T T 18T 8T 2T
Post-training SFT SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL SFT+RL
Alignment pairs 4.5M - - 0.5M + - IM + 0.15M - 1.5M + -
General Tasks
MMLU 65.5 (5) 68.4 (5) 44.1 (5) - - - 49.4 (0)
MMLU-pro 37.0 (0) 41.9 (0) 4.6 (0) 44.1 (5) 56.3 (5) 52.1(5) -
Hellaswag 74.6 (0) 75.5 (0) 51.5(0) - - - 68.5(-)
ARC-C 88.5 (0) 82.4 (0) 57.3(0) - - - 49.4 ()
Mathematics & Science
GSMSK 78.6 (4) 783 (4) 29.0 (4) 85.7 (0) 91.6 (0) 76.7 (0) 63.0 (0)
Math 26.6 (0) 29.6 (0) 3.8 (0) 52.9 (0) 75.5 (0) 44.3 (0) 15.8 (0)
GPQA 31.8(5) 319 (5) 28.4 (5) 34.3 (0) 36.4 (0) 32.8 (0) -
Code
HumanEval 47.6 (0) 59.8 (0) 16.5 (0) 79.9 (0) 84.8 (0) 68.9 (0) 48.2 (-)
MBPP 342 (4) 57.6 (4) 20.6 (4) 67.2 (0) 79.2 (0) 74.9 (0) 352(-)
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Large Language Diffusion Models

Ablation: Reversal Reasoning

@ The Reversal Curse: LLMs trained on ”A is B” fail to learn "B is A”’

@ The authors construct a dataset of 496 famous Chinese poem sentence pair.

Given a sentence from a poem, models are tasked with generating the subsequent

line (forward) or the preceding line (reversal) without additional fine-tuning.

Table 3. Comparison in the Poem Completion Task.

Forward Reversal

GPT-40 (2024-08-06) 82.7 34.3
Qwen2.5 7B Instruct 759 38.0
LLaDA 8B Instruct 48.8 42.4
7Lukas Berglund et al. “The Reversal Curse: LLMs trained on” A is B” fail to learn” B is A™. In: arXiv preprint arXi%i2309.12288 (2023},
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Discussion

@ Discussion
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Discussion

Difference between ARMs and MDMs

ARMs MDMs
Modeling Unidirectional Bidirectional
Generation flexibility From left to right ~ Turning machine
Computational complexity O(N?) O(N?T)
Parallel inference In batch In a diffusion step
Training stability Good Bad
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Discussion

Discussion

Some weaknesses:
e Sensitive to inference hyperparameter
e No alignment with reinforcement learning
e Scale is still small

Potential strengths:
e Implicit controlling: through conditional generation p(r | p, c).

Large Language Diffusion Models 2025.4.2 28/28



	Introduction
	Related Work: Diffusion Models in NLP
	Diffusion-LM
	Discrete Diffusion Model

	Large Language Diffusion Models
	Discussion

