Offline Reinforcement Learning J

Pu Yang
School of Mathematical Sciences, Peking University

2021.10.13

Offline Reinforcement Learning 20211013 1/42



Table of contents

0 Introduction

@ Off-policy evaluation (OPE)
@ Direct Methods
@ Importance Sampling

© distributional Shift
@ Distributional shift at test time
@ Distributional shift at training time

e Sampling efficiency

e Conclusion

Offline Reinforcement Learning 20211013 2/42



Introduction

0 Introduction

Offline Reinforcement Learning 2021.10.13  3/42



Markov Decision Processes (MDP) M =< S, A, P, R, >"

@ S - asetof states; s € S - a state
@ A - aset of actions; a € A - an action
@ P - transition probability function
@ R -reward function

@ ~ - discounting factor for future rewards
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Figure 1: The agent—environment interaction in a Markov decision process.

T Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Introduction

Bellman Equation

@ Value function: V(

E ’7 Tt4+k+1 | St = S:|
k=1

@ Qfunction: Qx(s,a) = Ex |:Z 'ykrt+k+1 | st = s,a = a]

k=1
Bellman equation
Vi (s) = Eanr [Q(st,a) | 8¢ = 8] = Ex [re41 + yVa(st41) | s¢ = 4]

Qr(s,a) =Ex [re41 + 7YVa(st41) | st = s,a¢ = q]
Ex [re41 + VEannQ(st41, ) | 8¢ = 5,0t = a]

Bellman optimality equation

V*(s) = réllg(x) Qr*(s,a) = mng [res1 + 9V (st41) | 8t = s,ar = a]

Q*(s,a) =E |Rey1 + ymax Q" (se11,0") | s¢ = s,ar = a

v
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on/off-line RL, on/off-policy RL

(a) online reinforcement learning (b) off-policy reinforcement learning (c) offline reinforcement learning

—————

roliout data_{(si.a:. 8], 1)} rollout data {(s: &, 8. ri)} {(ss, @80, r)}

rollout{s)

data collected once = = = — —
with any policy training phase

Figure 2: (a) Pictorial illustration of classic online reinforcement learning, (b) classic off-policy
reinforcement learning, and (c) offline reinforcement learning."

@ on/off-line: how to use samples
@ on/pff-policy: how to generate samples

» on-policy: evaluate or improve the policy that is used to make decisions
» off-policy: evaluate or improve a policy different from that used to generate the data

@ off-policy to off-line (not feasibel in practice)

1 Sergey Levine et al. “Offline reinforcement learning: Tutorial, review, and perspectives on open problems”. In: arXiv preprint arXiv.2805.01643(2020).
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Introduction

On policy: state-action-reward-state’-action’ (SARSA)

@ SARSA Algorithm

Sarsa (on-policy TD control) for estimating Q =~ ¢,

Algorithm parameters: step size o € (0, 1], small & > 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q) (e.g., =-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S using policy derived from @ (e.g., =-greedy)
QS, 4) < Q(S, 4) + a[R +1Q(S', ) — Q(5, A)]
S+ S A« A
until S is terminal

Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

» behavior policy: e-greedy
» evaluation policy: e-greedy
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Off-policy: Q-learning

@ Q-learning Algorithm

Q-learning (off-policy TD control) for estimating 7 ~ =,

Algorithm parameters: step size « € (0, 1], small £ > 0
Initialize Q(s, a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, 4) + Q(S, A) + a[R + ymax, Q(9',a) — Q(5, 4)]
S« s

until S is terminal

> behavior policy: e-greedy
» evaluation policy: greedy

Offline Reinforcement Learning 20211013  8/42



Why Offline RL?

@ data collection is expensive

> robotics'23
» educational agents

> healthcare*®
@ dangerous

» autonomous driving®
» healthcare

@ the domain is complex and effective generalization requires large data sets
» advertising and recommender systems(?)

1 Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection”. In: The International
Journal of Robotics Research 37.4-5 (2018), pp. 421-436.

2Dmilry Kalashnikov et al. “Scalable deep reinforcement learning for vision-based robotic manipulation”. In: Conference on Robot Learning. PMLR. 2018,
pp. 651-673.

3Andy Zeng et al. “Learning synergies between pushing and grasping with self-supervised deep reinforcement learning”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). |EEE. 2018, pp. 4238-4245.

4Omer Gottesman et al. “Evaluating reinforcement learning algorithms in observational health settings”. In: arXiv preprint arXiv:1805.12298 (2018).
50mer Gottesman et al. “Guidelines for reinforcement learning in healthcare”. In: Nature medicine 25.1 (2019), pp. 16-18.
SEkim Yurtsever et al. “A survey of autonomous driving: Common practices and emerging technologies”. In: /EEEAccess 8(2020), pp. 5844358469,
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Introduction

What are the difficulties?

@ No exploration (have no idea on that)
@ Hard to evaluate a policy

» off-policy evaluation (OPE)
@ distributional shift

» counterfactual queries
» want something different and better

@ require too many samples
» Sample efficiency
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Off-policy evaluation (OPE)

@ Off-policy evaluation (OPE)
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Off-policy evaluation (OPE)

Basic setting of Off-policy evaluation
@ an MDP M =< S, A, P, R,y >, where P and R is unknown
@ a historical data D = {r'}, generated by a behavior policy m,, where
Ti = {867 a67 Téa S’L aia ’I"i, e Sé”—l: aé"—ly T’é"—l}
@ a desired evaluation policy 7.
@ the OPE problem is to estimate the value V' (r.), defined as:

T—1
V(ﬂ'e) = Egc,\,do |:Z ’VtT't ‘ S0 = S:|

t=0

where a; ~ me(- | 8¢), Te41 ~ P(- | s¢,a¢), re ~ R(s¢, ar), and do is the initial state

distribution.
Off-Policy

Evaluation

— /T
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Off-policy evaluation (OPE)

Off-policy evaluation

@ Direct Methods

@ Importance Sampling (also called Inverse Propensity Scoring)

8| Standard 1S
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Figure 3: Categorization of OPE methods.’

T cameron Voloshin et al. “Empirical study of off-policy policy evaluation for reinforcement learning”. In: arXiv preprint arXiv:1911.06854 (2019}
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Direct Methods

@ Model-based

» Approximation Model: directly fit the transition P and reward R
» also suffer from distributional shift

@ Model-free
» Approximate Q function with Q(-; 6), parametrized by 6, then

N
Vir) = 30 3 mela] )Q(sh,6)

i=1lacA

» example: MRDR', FQE?, ...

1 Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. “More robust doubly robust off-policy evaluation™. In: /nternational Conference on
Machine Learning. PMLR. 2018, pp. 1447-1456.

2Hoang Le, Cameron Voloshin, and Yisong Yue. “Batch policy learning under constraints”. In: /nternational Conference on Machine Learning. PMLR.
2019, pp. 3703-3712.
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Off-policy evaluation (OPE) Direct Methods

Fitted Q Evaluation (FQE)

Given a Dataset D = {s:, as, s3,7:} and a policy 7 to be evaluated. R
Fitted Q Evaluation (FQE) learns a sequence of estimator Q(+; 0) = len;O Qr
@ Step 1: Initialization. Qo = 0 (or randomly)
@ Step 2:
Yt =1t + YEr, Qr1 (5141, 0)

@ Step 3: build a training dataset Dy, = {(ss,ai),v:}
@ Step 4:

N T-1

ZZ St:atva)_yZ)Q:

i1=1 t=0

then back to step 2.

Also theoretical guarantees: the generalization error is bounded!
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Off-policy evaluation (OPE) Importance Sampling

Importance Sampling (IS)

T
pw H mT(at | St T(5t+1 | St,at)

T T
We(at ‘ Sz) t
=E;~ R(s¢,
Py (tzl_[o 7Tb(at | St));’Y (St at):|
n T
A~ Zw} vy
i=1 t=0

my(al, | si,)
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Off-policy evaluation (OPE) Importance Sampling

Curse of horizon

@ consistent unbiased, but have high variance (growing exponentially with 77)
@ improvement
» Weighted Importance Sampling

) T )
Z?:l wiy Zz:o 'Ytr}s
i Wi

which is biased, but can have much lower variance.
» Per-Decision Importance Sampling’

J(me) =

T

t
TelQysr S
() = Brmp, [SOCTT 289500y sy a) |

1>
t=0 t/'=0 ﬂ-b(at’ I St’) n

T
>3 wiatd

i=1t=0

which is unbiased.

1 Doina Precup. “Eligibility traces for off-policy policy evaluation”. In: Computer Science Depariment Faculty Publiéation Series (20005; p. 80.
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Off-policy evaluation (OPE) Importance Sampling

Doubly robust estimator'?

In fact, DR estimator is a mixed strategy

n T

J(me) =D A (wilri = Q" (st,a5)) = wi—1Eamm, (als [Q (51, 0))])

i=1 t=0

which is unbiased if either m;, is known or if the model is correct.

It can be proved that the DR has lower variance than importance sampling.

1 Nan Jiang and Lihong Li. “Doubly robust off-policy value evaluation for reinforcement learning”. In: International Conference on Machine Learning.
PMLR. 2016, pp. 652-661.

2Ph\|\p Thomas and Emma Brunskill. “Data-efficient off-policy policy evaluation for reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2016, pp. 2139-2148.
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Off-policy evaluation (OPE) Importance Sampling

Doubly robust estimator

Scalabilities:
o fit @ with prior knowledge
@ trade off bias and variance
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Off-policy evaluation (OPE) Importance Sampling

Marginalized Importance Sampling’

Estimate the state-marginal importance ratio p"*(s) = 3@8 .
Notation:
@ d7 (s¢): the state marginal of & at ¢
T
° d7(s) = —— > " 4*df (s1): the normalized discounted state distribution
t=0

@ d"(s,a) =d"(s)m(als)

J(ﬂe) ]E(s a)~dTe , r~R(s,a) 7”)

d™(s,a
:E(s,a)wd”b,rwR(sa |: ) :|

- E(a a)~d™b,r~R(s,a) |:

1 Ruiyi Zhang et al. “Gendice: Generalized offline estimation of stationary values”. In: arXiv preprint arXiv:2002.09072 (2020).
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Off-policy evaluation (OPE) Importance Sampling

Marginalized Importance Sampling

"Forward” Bellman equation:

d™ (s') p™ (') = (1 =)do +de”b (s)me(a|s)P (s | s,a)
—_——

i=(d™bopme )(s")

::(EW’i op"'E)(s’)

There are several techniques to solve this equation, for example':

A e e E LR

where s,a, s’ € D.

1 Carles Gelada and Marc G Bellemare. “Off-policy deep reinforcement learning by bootstrapping the covariate shift”. In: Proceedings of the AAAI
Conference on Atrtificial Intelligence. Vol. 33. 01. 2019, pp. 3647-3655.
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Off-policy evaluation (OPE) Importance Sampling

Limitations of importance sampling

The importance weights will become degenerate when 7, is too different from !
@ the suboptimality of the behavior policy
@ the dimension of the state and action space
@ curse of horizon
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distributional Shift

© distributional Shift
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distributional Shift Distributional shift at test time

Distributional shift at test time

@ the test environment (state) differs from the training environment

Solutions:
@ theoretical bounds for Dy (d" (s)||d™ (s))"
@ detect different environment
o first offline learning, then online fine-tuning®

1 John Schulman et al. “Trust region policy optimization”. In: International conference on machine learning. PMLR. 2015, pp. 1889-1897.
2 Ashvin Nair et al. “Accelerating online reinforcement learning with offline datasets”. In: arXiv preprint arXiv:2006:09359(2020).
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distributional Shift Distributional shift at training time

Distributional shift at training time

@ Environments are the same, but the training is affected by action distributional shift
@ Formally, 7. (a | s) may differs substantially from m;(a | s)

Offline Reinforcement Learning 20211013 25/42



distributional Shift Distributional shift at training time

Model-free action distributional shift

@ Learned Q-function erroneously produces excessively large values.

@ Actor-Critic method:

Q7 (st,at) + Q™ (s1,a1) + afr(st, ar) + ymax Q™ (se+1, ar4+1) — Q7 (8¢, as)]

a1
then evaluate policy:
m(als) = argmax Eqr(als)[Q7 (s, a)]

iteratively.

@ 7w may be biased towards out-of-distribution actions with erroneously high Q-values

Offline Reinforcement Learning 20211013 26/42



distributional Shift

Q-function will be overestimated
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Distributional shift at training time

HalfCheetah-v2: log(Q)
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Figure 1: Performance of SAC on HalfCheetah-v2
(return (left) and log Q-values (right)) with off-policy
expert data w.r.t. number of training samples (n). Note
the large discrepancy between returns (which are nega-
tive) and log Q-values (which have large positive values),
which is not solved with additional samples.

1 Aviral Kumar et al. “Stabilizing off-policy g-learning via bootstrapping error reduction”. In: arXiv preprint-arXiv:1986.00949 (2019).
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distributional Shift Distributional shift at training time

Policy constraint methods

@ Prevent OOD action queries to be Q-function

m(als) =argmax E,r(a)s)[Q" (s, a)]
st. D(m,m) <e

@ Related works instantiate this approach with different choices of D.

Examples:
» BEAR-QL' uses maximum mean discrepancy (MMD), that is
st. Egup [MMD(D(- | ), me(- | 8))] <€
» 2 uses a parametric behavior model and measure distance by KL divergence

I7|

Oprm = arg mgLXIETND glogﬂ'e(at | s¢)

st. Egop [KL(me(: | 8), mpm (- | 8))] < €

1 Aviral Kumar et al. “Stabilizing off-policy g-learning via bootstrapping error reduction”. In: arXiv preprint arXiv:1906.00949 (2019).
2Noah Y Siegel et al. “Keep doing what worked: Behavioral modelling priors for offline reinforcement learning”. In“arXiv preprint arXiz2002.08396 (2020).
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distributional Shift Distributional shift at training time

Conservative Q-learning’

make a conservative prediction when OOD!
@ version 1:

Qk+1 < arg mcén aESND,aNWe(a\S) [Q(S7 a)] + %]ES@N’D [(Q(57 a) - BWQAIV (S’ a))2:|

Theoretically, it can be proved that:
the resulting Q-function Q™ = lim Q* lower bounds Q™ at all (s, a).

1 Aviral Kumar et al. “Conservative g-learning for offline reinforcement learning”. In: arXiv preprint arXiv.2006.04 779 (2020).
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distributional Shift Distributional shift at training time

Conservative Q-learning

@ version 2:

OF arngina- (Esnp anm,(als) [Q(S,8)] —Esnp amsy(als)[Q(s; a)])

+ %Es,a,s’ND |:(Q(S7 a) - BWQk(Sv a))2-

» |t is a tighter bound then previous result.
> Intuitively, Q™ is overestimated under 7, so it may not lower bound point-wise.
> Theoretically, the value V" (s) = E (415 (Q" (s, a)) lower bounds V.

Offline Reinforcement Learning 20211013 30/42



distributional Shift Distributional shift at training time

Conservative Q-learning

@ version 3 (CQL):

min max 0 (Bap v ol [Q(5: 8)] = Exnp anss a1 [Q(5:9)])

+yPanwen | (Q0) - 5 )| + R

> In practice, R can be a variety of common regularization
> In theory, when choose R as the KL divergence of a prior distribution, it can be proved
that the value V™ lower-bounds the true value V7.
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distributional Shift Distributional shift at training time

Conservative Q-learning

Algorithm 1 Conservative Q-Learning (both variants)

1: Initialize Q-function, (Q, and optionally a policy, 7.
2: forsteptin {I,....N} do
3:  Train the Q-function using G gradient steps on objective
from Equation 4
6; = 91_]_ - 'HQVBCQL(‘RJ(O)
(Use B* for Q-learning, 5™¢¢ for actor-critic)
4:  (only with actor-critic) Improve policy w4 via G gradient
steps on ¢ with SAC-style entropy regularization:
Ot := Ot—1 + NxEsmp.amn,(|s)[Qo(s,a) —log w4 (als)]
5: end for

Offline Reinforcement Learning 2021.10.13
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Distributional shift at training time
Model-based offline RL

@ Intuitively: OOD — poorly fit P and R — bad policy, bad performance

Theorem 4.1 in? (informal)

A\lichael Janner et al. “When to trust your model: Model-based policy optimization”. In: arXiv preprint arXiv:1906.08253 (2019).

Assume €, = m?XEdzrDTv(P(St+1 | s¢,ae)||P(st+1 | s¢,a:)) and
max Dry(me||m) < €, then
S

27rmax(€m + 2671') 47"maxf7r
5 +
(I=7) 1—v
The first term represents error accumulation due to the distribution shift in the model.

The second term represents error accumulation due to the distribution shift in the
policy.

J(r) > J(r) -

Offline Reinforcement Learning 20211013  33/42




distributional Shift Distributional shift at training time

Model-based offline RL

@ Algorithm

» combine some CV algorithms (e.g. visual foresight method')

» conservative model (e.g. MOREL? and MOPQO?®)
Let the error oracle u(s, a) to estimate the accuracy of the model at the state-action
tuple (s, a), for example in MOPO

D(T(st41 | st,a)||T(ses1 | se,ar)) < u(s, a)

@ Challenges
» distribution shift
» high-dimensional observations: the model not fits well
> long horizons: even small errors will accumulate

1 Frederik Ebert et al. “Visual foresight: Model-based deep reinforcement learning for vision-based robotic control™. In: arXiv preprint arXiv:1812.00568
(2018).

ZRahu\ Kidambi et al. “Morel: Model-based offline reinforcement learning”. In: arXiv preprint arXiv:2005.05951 (2020).

3Tianhe Yu et al. “Mopo: Model-based offline policy optimization”. In: arXiv preprint arXiv:2005.13239 (2020).
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e Sampling efficiency
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Sampling efficiency

Main question

How many samples do we need to evaluate the policy?
@ Under what assumptions, we need an exponential number of samples?

@ Under what assumptions, for a given algorithm, we need a polynomial number of
samples?
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Sampling efficiency

Linear Function Approximation

Assumption of Realizability?

aRuosong Wang et al. “Instabilities of Offline RL with Pre-Trained Neural Representation”. In: arXiv preprint arXiv:2103.04947 (2021).

For the policy 7 : S — A to evaluated, there exists 6* € R? and a feature extractor
#(s,a) : S x A — R? such that for all (s,a) € S x A, Q" (s,a) = (") é(s, a).
Without loss of generality, we assume that we work in a coordinate system such that

i d
J16°]12 < % and |¢(s, a)llz < 1

Feature covariance matrix
A £ E(s,a)w,u |:¢(S, a)¢(s7 a)T:|

A £ E(s,a)Nu,ENP(-ls,a)7&~7T('|5) |:¢(‘§7 ﬁ)¢(§, a)T]
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Sampling efficiency

The lower bound: realizability and coverage’

Assumption 1 (Realizable Linear Function Approximation). For every policy 7 : 8 — A(A), there
exists 07, ... 07, € R? such that for all (s,a) € S x Aand h € [H], Q7 (s,a) = (BE)T (s, a).

Assumption 2 (Feature Coverage). For all (s,a) € S x A, assume our feature map is bounded
such that ||¢(s. a)||2 < 1. Furthermore, suppose for each h € [H), the data distributions i, satisfy
the following minimum eigenvalue condition: o,y (E(s_a),‘,_th [o(s,a)o(s, a)T]) =1/d.?

1. . - .
Note that p is the largest possible minimum eigenvalue.

Theorem 4.1. Suppose Assumption 2 holds. Fix an algorithm that takes as input both a policy and
a feature mapping. There exists a (deterministic) MDP satisfving Assumption 1, such that for any
policy  : 8§ = A(A), the algorithm requires Q((d/2)") samples to output the value of 7 up to
constant additive approximation error with probability at least 0.9.

1 Ruosong Wang, Dean Foster, and Sham M. Kakade. “What are the Statistical Limits of Offline RL with Linear Function Approximation?” In: International
Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=30EvkPZaRQLD:
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The upper bound: Low distribution shift’

Assumption 3. We assume that for each h € [H|, there exists Cj, > 1 such that A, < Cj,Ap,.

Note that C;, measures the distribution shift.
For Least-Squares Policy Evaluation algorithm, there is the following theorem.

Theorem 5.2. Suppose for the given policy =, there exists 01,6, ..., 04 € R such thar for
each h € [H], Qi(s,a) &(s,a)T 8y, for all (s,a) € Sy x A and ||6y]ls < HVA* Let
A = CH./dlog(dH/§)N for some C > 0. With probability at least 1 — 6, for some ¢ > 0,
(QT(s1,7(s1)) — Q1(s1,7(51)))? < - l_[ff:l Cy, - dH? - \/dlog(dH/3)/N.

1 Ruosong Wang, Dean Foster, and Sham M. Kakade. “What are the Statistical Limits of Offline RL with Linear Function Approximation?” In: International

Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=30EvkPZaRQLD:
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Sampling efficiency

The upper bound: Policy Completeness'

Assumption 2 (Policy Completeness). For any § € RY, there exists 8 € R, such that for any
(s,a) € S x A,
B(s, G)TH' =K, R(s.0),5'~P(s.a) [r+~yo(s, 7"(5‘/))T9]»

For Fitted Q-lteration algorithm, under the above assumption, there is the following
theorem.

Lemma 4.2. Suppose N > poly(d,1/e,1/(1—=7),1/omin(A)), by taking T > C'log (d/(e(1 —~))) /(1—
v) for some constant C' > 0, we have

|Q7(s.a) = Q7 (s,a)| < £
for all (s,a) € S x A.

1 Ruosong Wang et al. “Instabilities of Offline RL with Pre-Trained Neural Representation”. In: arXiv preprint arXiv:i2103.04947 (2021}
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Conclusion

e Conclusion
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Conclusion

Future work

@ Theoretic grantees for more commonly used algorithms
@ New algorithms, new benchmark
@ Realistic guidance for application (e.g. how to sample)
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