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Introduction

Markov Decision Processes (MDP) M =< S,A, P,R, γ >1

S - a set of states; s ∈ S - a state

A - a set of actions; a ∈ A - an action

P - transition probability function

R - reward function

γ - discounting factor for future rewards

Figure 1: The agent–environment interaction in a Markov decision process.

1Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
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Introduction

Bellman Equation

Value function: Vπ(s) = Eπ

[
∞∑
k=1

γkrt+k+1 | st = s

]

Q function: Qπ(s, a) = Eπ

[
∞∑
k=1

γkrt+k+1 | st = s, at = a

]

Bellman equation

Vπ(s) = Ea∼π [Q(st, a) | st = s] = Eπ [rt+1 + γVπ(st+1) | st = s]

Qπ(s, a) = Eπ [rt+1 + γVπ(st+1) | st = s, at = a]

= Eπ [rt+1 + γEa∼πQ(st+1, a) | st = s, at = a]

Bellman optimality equation

V ?(s) = max
a∈A(s)

Qπ?(s, a) = max
a

E [rt+1 + γV ?(st+1) | st = s, at = a]

Q?(s, a) = E
[
Rt+1 + γmax

a′
Q?(st+1, a

′) | st = s, at = a

]
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Introduction

on/off-line RL, on/off-policy RL

Figure 2: (a) Pictorial illustration of classic online reinforcement learning, (b) classic off-policy
reinforcement learning, and (c) offline reinforcement learning.1

on/off-line: how to use samples
on/pff-policy: how to generate samples

I on-policy: evaluate or improve the policy that is used to make decisions
I off-policy: evaluate or improve a policy different from that used to generate the data

off-policy to off-line (not feasibel in practice)

1Sergey Levine et al. “Offline reinforcement learning: Tutorial, review, and perspectives on open problems”. In: arXiv preprint arXiv:2005.01643 (2020).
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Introduction

On policy: state-action-reward-state’-action’ (SARSA)

SARSA Algorithm

I behavior policy: ε-greedy
I evaluation policy: ε-greedy
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Introduction

Off-policy: Q-learning

Q-learning Algorithm

I behavior policy: ε-greedy
I evaluation policy: greedy
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Introduction

Why Offline RL?

data collection is expensive
I robotics123

I educational agents
I healthcare45

dangerous
I autonomous driving6

I healthcare
the domain is complex and effective generalization requires large data sets

I advertising and recommender systems(?)

1Sergey Levine et al. “Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection”. In: The International
Journal of Robotics Research 37.4-5 (2018), pp. 421–436.

2Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for vision-based robotic manipulation”. In: Conference on Robot Learning. PMLR. 2018,
pp. 651–673.

3Andy Zeng et al. “Learning synergies between pushing and grasping with self-supervised deep reinforcement learning”. In: 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2018, pp. 4238–4245.

4Omer Gottesman et al. “Evaluating reinforcement learning algorithms in observational health settings”. In: arXiv preprint arXiv:1805.12298 (2018).
5Omer Gottesman et al. “Guidelines for reinforcement learning in healthcare”. In: Nature medicine 25.1 (2019), pp. 16–18.
6Ekim Yurtsever et al. “A survey of autonomous driving: Common practices and emerging technologies”. In: IEEE Access 8 (2020), pp. 58443–58469.
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Introduction

What are the difficulties?

No exploration (have no idea on that)
Hard to evaluate a policy

I off-policy evaluation (OPE)
distributional shift

I counterfactual queries
I want something different and better

require too many samples
I Sample efficiency

Pu Yang Offline Reinforcement Learning 2021.10.13 10 / 42



Off-policy evaluation (OPE)

1 Introduction

2 Off-policy evaluation (OPE)

3 distributional Shift

4 Sampling efficiency

5 Conclusion

Pu Yang Offline Reinforcement Learning 2021.10.13 11 / 42



Off-policy evaluation (OPE)

Basic setting of Off-policy evaluation

an MDPM =< S,A, P,R, γ >, where P and R is unknown
a historical data D = {τ i}N1 , generated by a behavior policy πb, where

τ i = {si0, ai0, ri0, si1, ai1, ri1, · · · siT−1, a
i
T−1, r

i
T−1}

a desired evaluation policy πe
the OPE problem is to estimate the value V (πe), defined as:

V (πe) = Ex∼d0

[
T−1∑
t=0

γtrt | s0 = s

]

where at ∼ πe(· | st), xt+1 ∼ P (· | st, at), rt ∼ R(st, aT ), and d0 is the initial state
distribution.

Pu Yang Offline Reinforcement Learning 2021.10.13 12 / 42



Off-policy evaluation (OPE)

Off-policy evaluation

Direct Methods

Importance Sampling (also called Inverse Propensity Scoring)

Figure 3: Categorization of OPE methods.1

1Cameron Voloshin et al. “Empirical study of off-policy policy evaluation for reinforcement learning”. In: arXiv preprint arXiv:1911.06854 (2019).
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Off-policy evaluation (OPE) Direct Methods

Direct Methods

Model-based
I Approximation Model: directly fit the transition P and reward R
I also suffer from distributional shift

Model-free
I Approximate Q function with Q̂(·; θ), parametrized by θ, then

V (πe) =
1

N

N∑
i=1

∑
a∈A

πe(a | s)Q̂(si0, a; θ)

I example: MRDR1, FQE2, ...

1Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. “More robust doubly robust off-policy evaluation”. In: International Conference on
Machine Learning. PMLR. 2018, pp. 1447–1456.

2Hoang Le, Cameron Voloshin, and Yisong Yue. “Batch policy learning under constraints”. In: International Conference on Machine Learning. PMLR.
2019, pp. 3703–3712.
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Off-policy evaluation (OPE) Direct Methods

Fitted Q Evaluation (FQE)

Given a Dataset D = {st, at, s′t, rt} and a policy π to be evaluated.
Fitted Q Evaluation (FQE) learns a sequence of estimator Q̂(·; θ) = lim

k→∞
Q̂k

Step 1: Initialization. Q̂0 = 0 (or randomly)

Step 2:
yit = rit + γEπeQ̂k−1(sit+1, ·; θ)

Step 3: build a training dataset Dk = {(si, ai), yi}
Step 4:

Q̂k = min
θ

1

N

N∑
i=1

T−1∑
t=0

(Q̂k−1(sit, a
i
t; θ)− yit)2,

then back to step 2.

Also theoretical guarantees: the generalization error is bounded!
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Off-policy evaluation (OPE) Importance Sampling

Importance Sampling (IS)

pπ(τ) = d0(s0)

T∏
t=0

π(at | st)T (st+1 | st, at)

J(πe) = Eτ∼pπe

[
T∑
t=0

γtR(st, at)

]

= Eτ∼pπb

[
πe(τ)

πb(τ)

T∑
t=0

γtR(st, at)

]

= Eτ∼pπb

[
(

T∏
t=0

πe(at | st)
πb(at | st)

)

T∑
t=0

γtR(st, at)

]

≈
n∑
i=1

wiT

T∑
t=0

γtrit

where wit =
1

n

t∏
t′=0

πe(a
i
t′ | sit′)

πb(ait′ | sit′)
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Off-policy evaluation (OPE) Importance Sampling

Curse of horizon

consistent unbiased, but have high variance (growing exponentially with T )
improvement

I Weighted Importance Sampling

J(πe) ≈
∑n
i=1 w

i
H

∑T
t=0 γ

trit∑n
i=1 w

i
H

which is biased, but can have much lower variance.
I Per-Decision Importance Sampling1

J(πe) = Eτ∼pπb

[
T∑
t=0

(
t∏

t′=0

πe(at′ | st′ )
πb(at′ | st′ )

)γtR(st, at)

]
≈

1

n

n∑
i=1

T∑
t=0

witγ
trit

which is unbiased.

1Doina Precup. “Eligibility traces for off-policy policy evaluation”. In: Computer Science Department Faculty Publication Series (2000), p. 80.
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Off-policy evaluation (OPE) Importance Sampling

Doubly robust estimator12

In fact, DR estimator is a mixed strategy

J(πe) =

n∑
i=1

T∑
t=0

γt(wit(r
i
t − Q̂πe(st, as))− wit−1Ea∼πe(a|st)[Q̂

πe(st, a)])

which is unbiased if either πb is known or if the model is correct.

It can be proved that the DR has lower variance than importance sampling.

1Nan Jiang and Lihong Li. “Doubly robust off-policy value evaluation for reinforcement learning”. In: International Conference on Machine Learning.
PMLR. 2016, pp. 652–661.

2Philip Thomas and Emma Brunskill. “Data-efficient off-policy policy evaluation for reinforcement learning”. In: International Conference on Machine
Learning. PMLR. 2016, pp. 2139–2148.
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Off-policy evaluation (OPE) Importance Sampling

Doubly robust estimator

Scalabilities:

fit Q with prior knowledge

trade off bias and variance
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Off-policy evaluation (OPE) Importance Sampling

Marginalized Importance Sampling1

Estimate the state-marginal importance ratio ρπe(s) =
dπe(s)

dπb(s)
.

Notation:

dπt (st): the state marginal of π at t

dπ(s) =
1

1− γ

T∑
t=0

γtdπt (st): the normalized discounted state distribution

dπ(s, a) = dπ(s)π(a|s)

J(πe) = E(s,a)∼dπe ,r∼R(s,a)(r)

= E(s,a)∼dπb ,r∼R(s,a)

[
dπe(s, a)

dπb(s, a)
r

]
= E(s,a)∼dπb ,r∼R(s,a)

[
dπe(s)πe(a|s)
dπb(s)πb(a|s)

r

]

1Ruiyi Zhang et al. “Gendice: Generalized offline estimation of stationary values”. In: arXiv preprint arXiv:2002.09072 (2020).
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Off-policy evaluation (OPE) Importance Sampling

Marginalized Importance Sampling

”Forward” Bellman equation:

dπb
(
s′
)
ρπe

(
s′
)︸ ︷︷ ︸

:=(dπb◦ρπe )(s′)

= (1− γ)d0

(
s′
)

+ γ
∑
s,a

dπb(s)ρπe(s)πe(a | s)P
(
s′ | s,a

)
︸ ︷︷ ︸

:=(Bπe◦ρπe)(s′)

There are several techniques to solve this equation, for example1:

ρ̂πe
(
s′
)
← ρ̂πe

(
s′
)

+ α

[
(1− γ) + γ

πe(a | s)
πb(a | s)

ρ̂πe(s)− ρ̂πe
(
s′
)]

where s, a, s′ ∈ D.

1Carles Gelada and Marc G Bellemare. “Off-policy deep reinforcement learning by bootstrapping the covariate shift”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 3647–3655.
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Off-policy evaluation (OPE) Importance Sampling

Limitations of importance sampling

The importance weights will become degenerate when πb is too different from πe!

the suboptimality of the behavior policy

the dimension of the state and action space

curse of horizon
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distributional Shift Distributional shift at test time

Distributional shift at test time

the test environment (state) differs from the training environment

Solutions:

theoretical bounds for DKL(dπ(s)||dπb(s))1

detect different environment

first offline learning, then online fine-tuning2

1John Schulman et al. “Trust region policy optimization”. In: International conference on machine learning. PMLR. 2015, pp. 1889–1897.
2Ashvin Nair et al. “Accelerating online reinforcement learning with offline datasets”. In: arXiv preprint arXiv:2006.09359 (2020).
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distributional Shift Distributional shift at training time

Distributional shift at training time

Environments are the same, but the training is affected by action distributional shift

Formally, πe(a | s) may differs substantially from πb(a | s)

Pu Yang Offline Reinforcement Learning 2021.10.13 25 / 42



distributional Shift Distributional shift at training time

Model-free action distributional shift

Learned Q-function erroneously produces excessively large values.

Actor-Critic method:

Qπ(st, at)← Qπ(st, at) + α[r(st, at) + γmax
at+1

Qπ(st+1, at+1)−Qπ(st, at)]

then evaluate policy:

π(a|s) = arg maxEa∼π(a|s)[Q
π(s, a)]

iteratively.

π may be biased towards out-of-distribution actions with erroneously high Q-values

Pu Yang Offline Reinforcement Learning 2021.10.13 26 / 42



distributional Shift Distributional shift at training time

Q-function will be overestimated

1

1Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error reduction”. In: arXiv preprint arXiv:1906.00949 (2019).
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distributional Shift Distributional shift at training time

Policy constraint methods

Prevent OOD action queries to be Q-function

π(a|s) =arg maxπEa∼π(a|s)[Q
π(s, a)]

s.t. D(π, πb) ≤ ε

Related works instantiate this approach with different choices of D.

Examples:
I BEAR-QL1 uses maximum mean discrepancy (MMD), that is

s.t. Es∼D [MMD(D(· | s), πe(· | s))] ≤ ε

I 2 uses a parametric behavior model and measure distance by KL divergence

θbm = argmax
θ

Eτ∼D

 |τ |∑
t=1

log πθ(at | st)


s.t. Es∼D [KL(πe(· | s), πbm(· | s))] ≤ ε

1Aviral Kumar et al. “Stabilizing off-policy q-learning via bootstrapping error reduction”. In: arXiv preprint arXiv:1906.00949 (2019).
2Noah Y Siegel et al. “Keep doing what worked: Behavioral modelling priors for offline reinforcement learning”. In: arXiv preprint arXiv:2002.08396 (2020).
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distributional Shift Distributional shift at training time

Conservative Q-learning1

make a conservative prediction when OOD!
version 1:

Q̂k+1 ← arg min
Q

αEs∼D,a∼πe(a|s)[Q(s,a)] +
1

2
Es,a∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2
]

Theoretically, it can be proved that:
the resulting Q-function Q̂π = lim Q̂k lower bounds Qπ at all (s, a).

1Aviral Kumar et al. “Conservative q-learning for offline reinforcement learning”. In: arXiv preprint arXiv:2006.04779 (2020).
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distributional Shift Distributional shift at training time

Conservative Q-learning

version 2:

Q̂k+1 ← arg min
Q

α ·
(
Es∼D,a∼πe(a|s)[Q(s,a)] −Es∼D,a∼π̂b(a|s)[Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2
]

I It is a tighter bound then previous result.
I Intuitively, Q̂π is overestimated under π̂b, so it may not lower bound point-wise.
I Theoretically, the value V̂ π(s) = Eπ(a|s)(Q̂

π(s, a)) lower bounds V π .
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distributional Shift Distributional shift at training time

Conservative Q-learning

version 3 (CQL):

min
Q

max
µ

α
(
Es∼D,a∼µ(a|s)[Q(s,a)]− Es∼D,a∼π̂β(a|s)[Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πkQ̂k(s,a)

)2
]

+R(µ)

I In practice, R can be a variety of common regularization
I In theory, when choose R as the KL divergence of a prior distribution, it can be proved

that the value V̂ π lower-bounds the true value V π .
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distributional Shift Distributional shift at training time

Conservative Q-learning
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distributional Shift Distributional shift at training time

Model-based offline RL

Intuitively: OOD→ poorly fit P and R→ bad policy, bad performance

Theorem 4.1 ina (informal)
aMichael Janner et al. “When to trust your model: Model-based policy optimization”. In: arXiv preprint arXiv:1906.08253 (2019).

Assume εm = max
t

Edπt DTV(P̂ (st+1 | st, at)||P (st+1 | st, at)) and

max
s
DTV(πe||πb) ≤ επ, then

J(π) ≥ Ĵ(π)−
[

2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
1− γ

]
The first term represents error accumulation due to the distribution shift in the model.
The second term represents error accumulation due to the distribution shift in the
policy.
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distributional Shift Distributional shift at training time

Model-based offline RL

Algorithm
I combine some CV algorithms (e.g. visual foresight method1)
I conservative model (e.g. MoREL2 and MOPO3)

Let the error oracle u(s, a) to estimate the accuracy of the model at the state-action
tuple (s, a), for example in MOPO

D(T̂ (st+1 | st, at)||T (st+1 | st, at)) ≤ u(s, a)

Challenges
I distribution shift
I high-dimensional observations: the model not fits well
I long horizons: even small errors will accumulate

1Frederik Ebert et al. “Visual foresight: Model-based deep reinforcement learning for vision-based robotic control”. In: arXiv preprint arXiv:1812.00568
(2018).

2Rahul Kidambi et al. “Morel: Model-based offline reinforcement learning”. In: arXiv preprint arXiv:2005.05951 (2020).
3Tianhe Yu et al. “Mopo: Model-based offline policy optimization”. In: arXiv preprint arXiv:2005.13239 (2020).
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Sampling efficiency

Main question

How many samples do we need to evaluate the policy?
Under what assumptions, we need an exponential number of samples?

Under what assumptions, for a given algorithm, we need a polynomial number of
samples?
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Sampling efficiency

Linear Function Approximation

Assumption of Realizabilitya

aRuosong Wang et al. “Instabilities of Offline RL with Pre-Trained Neural Representation”. In: arXiv preprint arXiv:2103.04947 (2021).

For the policy π : S → A to evaluated, there exists θ? ∈ Rd and a feature extractor
φ(s, a) : S ×A → Rd such that for all (s, a) ∈ S ×A, Qπ(s, a) = (θ?)Tφ(s, a).
Without loss of generality, we assume that we work in a coordinate system such that

||θ?||2 ≤
√
d

1− γ and ||φ(s, a)||2 ≤ 1

Feature covariance matrix

Λ , E(s,a)∼µ

[
φ(s, a)φ(s, a)>

]
Λ̄ , E(s,a)∼µ,s̄∼P (·|s,a),ā∼π(·|s̄)

[
φ(s̄, ā)φ(s̄, ā)>

]
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Sampling efficiency

The lower bound: realizability and coverage1

Note that
1

d
is the largest possible minimum eigenvalue.

1Ruosong Wang, Dean Foster, and Sham M. Kakade. “What are the Statistical Limits of Offline RL with Linear Function Approximation?” In: International
Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=30EvkP2aQLD.
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Sampling efficiency

The upper bound: Low distribution shift1

Note that Ch measures the distribution shift.
For Least-Squares Policy Evaluation algorithm, there is the following theorem.

1Ruosong Wang, Dean Foster, and Sham M. Kakade. “What are the Statistical Limits of Offline RL with Linear Function Approximation?” In: International
Conference on Learning Representations. 2021. URL: https://openreview.net/forum?id=30EvkP2aQLD.
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Sampling efficiency

The upper bound: Policy Completeness1

For Fitted Q-Iteration algorithm, under the above assumption, there is the following
theorem.

1Ruosong Wang et al. “Instabilities of Offline RL with Pre-Trained Neural Representation”. In: arXiv preprint arXiv:2103.04947 (2021).
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Conclusion

Future work

Theoretic grantees for more commonly used algorithms

New algorithms, new benchmark
Realistic guidance for application (e.g. how to sample)
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