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Review of Reinforcement Learning with Human Feedback
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Preliminaries

B Supervised Fine-Tuning (SFT) Phase

B Reward Modelling Phase
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Reward modelling phase: Framing the problem as a binary classification we have the negative log-likelihood loss


Overview
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Offline Method:
Direct Preference Optimization (DPO)

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." Advances in Neural Information Processing
Systems 36 (2024).



Overview

B DPO optimizes for human preferences while avoiding reinforcement learning.

Reinforcement Learning from Human Feedback (RLHF) Direct Preference Optimization (DPO)
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Optimal Solution to the KL-constrained Reward Maximization
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Optimal Solution to the KL-constrained Reward Maximization

B We define

7 (vle) = s mer(ylo) exp (%fr(as,y)) ,

B Then re-organize the objective function as
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Optimal Solution to the KL-constrained Reward Maximization

B Gibbs’ inequality tells us that the KL-divergence is minimized at O if and only if the two

distributions are identical. Hence, we have the optimal solution

m(ylz) = 7" (y|x) = %x)ﬂref(y|$) exp (%?"(I‘,g))

B However, it is still expensive to estimate the partition function Z(x).



Re-organize Preference Model

B We can express the (unavailable) ground-truth reward as:

r*(2,y) = Blog ;f((i‘;'f; )) + Blog Z(x)

B Then we obtain:

exp ( Blog TS + Blog Z(x)
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DPO Objective Function

B Analogous to the reward modeling approach, we can formulate a maximum likelihood

objective for a parametrized policy mg.
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B What does the DPO update do?

The gradient with respect to the parameters 6 can be written as:
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where 7y (z,y) = Blog ZeW) is the implicit reward.
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理论上，等价于优化了不带约束的，重参数化之后的\hat{r}


DPO Outline

B 1.Sample completions y;,y, ~ Tyer (- | X) for every prompt x, label with human

preferences to construct the offline dataset of preferences D = {(x, y,,, 1) }.

B 2. optimize the language model g to minimize the DPO loss for the given ;.. and D

and desired 5.



Compared to PPO

B Task: x is a forum post from Reddit; the policy must generate a summary y of the main

points in the post.
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Best of 128是在SFT生成出来的128个结果中选最好的一个。


Conclusion
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Offline Method:

Statistical Rejection Sampling Improves

Preference Optimization (RSO)

Liu, Tianqi, et al. "Statistical Rejection Sampling Improves Preference Optimization." The Twelfth International Conference on Learning

Representations. 2023.



Preference Data Distribution -- Intuition

B Suppose we have access to the oracle preference data
D* ={(x,vw, V1) | Y, Vi ~ T*(y | x)}, we can directly fit an MLE on the dataset.

B [n reality, we have access to Dy = {(%, Vi, V1) | Y Vi ~ Tyunk (V | X)}, where w5
denotes some mixed unknown policies. The mixed unknown policies can include SFT

policy, previous or current RLHF policy, or policies from other agents.



Preference Data Distribution -- Choices

B Direct: directly fit the policy on Dp¢.

B SFT-sample-rank: use 7. (y | X) to sample response pairs given prompts from the SFT

training set and label them by a pre-trained reward model 1, (x, y).

B RSO-sample-rank: use Tr,, (¥ | x) induced by r, (x, y) to sample response pairs given

prompts labelled by the pre-trained reward model 1y, (x, ¥), according to
T (ylz) = %m(ylw) exp (%T(fﬂ,y))

Statistically speaking, “rso-sample-rank” is closer to m*(y | x) than other two choices.



How to sample from Ty, (y | x)? Rejection Sampling!

1. Start with empty ) = {}.
2. Generate y ~ 7y (y|z) that is notin ) and u ~ U|0, 1].

Tr,, (y|©)

Mra(ylz)” then we

3. Let M = min{m | mmy(y|z) > ., (y|z) forally ¢ Y}°. If u <
accept y and add 1t to ). Otherwise, we reject y.

4. Repeat step 2 and 3 until we get enough ).

SFT Policy x M
Low reward Optimal Policy
4, » = Reward
Accept
High reward " Reject

Decoded Sequence Y from Input X



Experiments

B Two tasks:
B Reddit TL;DR summarization

B AnthropicHH dialogue

Approach Ablation Metrics
Loss Preference Pair ~ Proxy Reward (%) Gold Reward (%)  AutoSxS (%)
Reddit TL;DR
RAFT cross-entropy - 74.84 68.51 53.77
ReST cross-entropy - 49.03 46.17 34.36
DPO sigmoid-norm  direct 84.35 76.09 67.72
sigmoid-norm  sft-sample-rank 88.63 78.14 69.02
RSOsigmoid-norm  sigmoid-norm  rso-sample-rank 92.37 82.22 71.86
AnthropicHH
RAFT cross-entropy - 58.21 40.00 24.99
ReST cross-entropy - 43.48 30.33 15.58
DPO sigmoid-norm  direct 51.63 36.13 24.01
sigmoid-norm  sft-sample-rank 85.09 58.65 39.56
RSOsigmoid-norm ~ sigmoid-norm  rso-sample-rank 86.94 59.15 40.98
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Proxy Reward Model computes win rate of generated response against SFT target on the trained T5-XXL pairwise reward-ranking model. Follow the recipe in Gao et al. (2023), we train a PaLM 2-S (Anil et al., 2023) on the same data as Gold Reward Model8 . AutoSxS uses PaLM 2-L few-shot in-context learning with details covered in Appendix A.4. Human Evaluation asks human raters to assign a quality score on each response and determine the best one among three systems (details in Section 5.3). 


Online Method:
Reinforced Self-Training (ReST)

Gulcehre, Caglar, et al. "Reinforced self-training (rest) for language modeling." arXiv preprint arXiv:2308.08998 (2023).



Overview
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Reinforced Self-Training Algorithm

B Grow step (data generation): create an augmented dataset D, by sampling many output

sequences from the current policy g
ie. y ~ mg(y|x) for x ~ D
Then score the new dataset with a reward function R(x, y).
B |Improve step (policy improvement): use the dataset D, to fine-tune the policy my.

Define a filtering function that t includes only samples with rewards higher than a

certain threshold

F(x, Y, T) = jlI—i(x,y)>'r-

Then finetune the current policy with an offline RL loss on the filtered data

J(Q) — [E(x,y)~Z)g [F(xs Yy, T) L(xa Yy, 9)] .



Experiments

B Task: Translation
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Discussion




Non-static Environment

i Preference Model Human-Feedback Pref
Pretrained ElL ! . — reference
LM > Pretraining (PMP) — Fine-Tuning Model
J Human-Feedback
Comparison
l Data
HHH prompt Initial Policy RLHF (PPO) — ¢ Pﬁhggs

context distillation

Human Feedback Interface

N

Bai Y, Jones A, Ndousse K, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback[J]. arXiv preprint

arXiv:2204.05862, 2022.
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需要回头去更新RM和Policy。


Future Direction

B SEATIRERIbudget, WUANKITEMIZGIIFE?
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