Variants of Reinforcement Learning with Human Feedback

Pu Yang

2024.3.20

Content

- Review of Reinforcement Learning with Human Feedback (RLHF)
- Offline Methods
 - Direct Preference Optimization (DPO)
 - Statistical Rejection Sampling Improves Preference Optimization (RSO)
- Online Methods
 - Reinforced Self-Training (ReST)
- Discussion

Review of Reinforcement Learning with Human Feedback (RLHF)

Review of Reinforcement Learning with Human Feedback

Preliminaries

- Supervised Fine-Tuning (SFT) Phase
- Reward Modelling Phase

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$$

$$\mathcal{L}_R(r_{\phi}, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_{\phi}(x, y_w) - r_{\phi}(x, y_l)) \right]$$

■ Reinforcement Learning (RL) Fine-Tuning Phase

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x, y)] - \beta \mathbb{D}_{KL} [\pi_{\theta}(y \mid x) \mid\mid \pi_{ref}(y \mid x)]$$

Overview

- Inaccessible to the complete environment
- Model-based method:

Offline Method: Direct Preference Optimization (DPO)

Rafailov, Rafael, et al. "Direct preference optimization: Your language model is secretly a reward model." *Advances in Neural Information Processing Systems* 36 (2024).

Overview

DPO optimizes for human preferences while avoiding reinforcement learning.

Optimal Solution to the KL-constrained Reward Maximization

$$\max_{\pi} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi} \left[r(x, y) \right] - \beta \mathbb{D}_{KL} \left[\pi(y|x) \mid \mid \pi_{ref}(y|x) \right] \\
= \max_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[r(x, y) - \beta \log \frac{\pi(y|x)}{\pi_{ref}(y|x)} \right] \\
= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi_{ref}(y|x)} - \frac{1}{\beta} r(x, y) \right] \\
= \min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\frac{1}{Z(x)} \pi_{ref}(y|x)} \exp \left(\frac{1}{\beta} r(x, y) \right) - \log Z(x) \right]$$

where we have partition function:

$$Z(x) = \sum_{y} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta}r(x,y)\right).$$

Optimal Solution to the KL-constrained Reward Maximization

■ We define

$$\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right),\,$$

■ Then re-organize the objective function as

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{E}_{y \sim \pi(y|x)} \left[\log \frac{\pi(y|x)}{\pi^*(y|x)} \right] - \log Z(x) \right] =$$

$$\min_{\pi} \mathbb{E}_{x \sim \mathcal{D}} \left[\mathbb{D}_{KL}(\pi(y|x) \mid\mid \pi^*(y|x)) - \log Z(x) \right]$$

Optimal Solution to the KL-constrained Reward Maximization

■ Gibbs' inequality tells us that the KL-divergence is minimized at 0 if and only if the two distributions are identical. Hence, we have the optimal solution

$$\pi(y|x) = \pi^*(y|x) = \frac{1}{Z(x)} \pi_{\text{ref}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right)$$

 \blacksquare However, it is still expensive to estimate the partition function Z(x).

Re-organize Preference Model

■ We can express the (unavailable) ground-truth reward as:

$$r^*(x,y) = \beta \log \frac{\pi^*(y|x)}{\pi_{\text{ref}}(y|x)} + \beta \log Z(x)$$

■ Then we obtain:

$$p^{*}(y_{1} \succ y_{2}|x) = \frac{\exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} + \beta \log Z(x)\right)}{\exp\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} + \beta \log Z(x)\right) + \exp\left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)} + \beta \log Z(x)\right)}$$

$$= \frac{1}{1 + \exp\left(\beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)} - \beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)}\right)}$$

$$= \sigma\left(\beta \log \frac{\pi^{*}(y_{1}|x)}{\pi_{\text{ref}}(y_{1}|x)} - \beta \log \frac{\pi^{*}(y_{2}|x)}{\pi_{\text{ref}}(y_{2}|x)}\right).$$

DPO Objective Function

Analogous to the reward modeling approach, we can formulate a maximum likelihood objective for a parametrized policy π_{θ} .

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right].$$

■ What does the DPO update do?

The gradient with respect to the parameters θ can be written as:

$$\nabla_{\theta} \mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = \\ -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \right] \right],$$

where $\hat{r}_{\theta}(x,y) = \beta \log \frac{\pi_{\theta}(y|x)}{\pi_{\text{ref}}(y|x)}$ is the implicit reward.

DPO Outline

- 1. Sample completions $y_1, y_2 \sim \pi_{ref}(\cdot \mid x)$ for every prompt x, label with human preferences to construct the offline dataset of preferences $D = \{(x, y_w, y_l)\}$.
- lacksquare 2. optimize the language model π_{θ} to minimize the DPO loss for the given π_{ref} and D and desired β .

Compared to PPO

■ Task: x is a forum post from Reddit; the policy must generate a summary y of the main points in the post.

Conclusion

■ Advantage: 训练方便(不需要一边inference一边train),节省GPU memory

■ Disadvantage: 效果褒贬不一

Offline Method:

Statistical Rejection Sampling Improves
Preference Optimization (RSO)

Liu, Tianqi, et al. "Statistical Rejection Sampling Improves Preference Optimization." *The Twelfth International Conference on Learning Representations*. 2023.

Preference Data Distribution -- Intuition

- Suppose we have access to the oracle preference data
 - $D^* = \{(x, y_w, y_l) \mid y_w, y_l \sim \pi^*(y \mid x)\},$ we can directly fit an MLE on the dataset.
- In reality, we have access to $D_{hf} = \{(x, y_w, y_l) \mid y_w, y_l \sim \pi_{unk} \ (y \mid x)\}$, where π_{unk} denotes some mixed unknown policies. The mixed unknown policies can include SFT policy, previous or current RLHF policy, or policies from other agents.

Preference Data Distribution -- Choices

- \blacksquare Direct: directly fit the policy on D_{hf} .
- SFT-sample-rank: use $\pi_{sft}(y \mid x)$ to sample response pairs given prompts from the SFT training set and label them by a pre-trained reward model $r_{\psi}(x, y)$.
- RSO-sample-rank: use $\pi_{r_{\psi}}(y \mid x)$ induced by $r_{\psi}(x,y)$ to sample response pairs given prompts labelled by the pre-trained reward model $r_{\psi}(x,y)$, according to

$$\pi_r(y|x) = \frac{1}{Z(x)} \pi_{\text{sft}}(y|x) \exp\left(\frac{1}{\beta} r(x,y)\right)$$

Statistically speaking, "rso-sample-rank" is closer to $\pi^*(y \mid x)$ than other two choices.

How to sample from $\pi_{r_{\psi}}(y \mid x)$? Rejection Sampling!

- 1. Start with empty $\mathcal{Y} = \{\}$.
- 2. Generate $y \sim \pi_{\rm sft}(y|x)$ that is not in \mathcal{Y} and $u \sim U[0,1]$.
- 3. Let $M = \min\{m \mid m\pi_{\rm sft}(y|x) \geq \pi_{r_{\psi}}(y|x) \text{ for all } y \notin \mathcal{Y}\}^6$. If $u < \frac{\pi_{r_{\psi}}(y|x)}{M\pi_{\rm sft}(y|x)}$, then we accept y and add it to \mathcal{Y} . Otherwise, we reject y.
- 4. Repeat step 2 and 3 until we get enough \mathcal{Y} .

Experiments

■ Two tasks:

- Reddit TL;DR summarization
- AnthropicHH dialogue

Approach	Ablation		Metrics		
	Loss	Preference Pair	Proxy Reward (%)	Gold Reward (%)	AutoSxS (%)
Reddit TL;DR					
RAFT	cross-entropy	-	74.84	68.51	53.77
ReST	cross-entropy	-	49.03	46.17	34.36
DPO	sigmoid-norm	direct	84.35	76.09	67.72
	sigmoid-norm	sft-sample-rank	88.63	78.14	69.02
$RSO_{sigmoid-norm}$	sigmoid-norm	rso-sample-rank	92.37	82.22	71.86
AnthropicHH					
RAFT	cross-entropy	-	58.21	40.00	24.99
ReST	cross-entropy	-	43.48	30.33	15.58
DPO	sigmoid-norm	direct	51.63	36.13	24.01
	sigmoid-norm	sft-sample-rank	85.09	58.65	39.56
RSO _{sigmoid-norm}	sigmoid-norm	rso-sample-rank	86.94	59.15	40.98

Online Method: Reinforced Self-Training (ReST)

Overview

Figure 1 | *ReST* method. During Grow step, a policy generates a dataset. At Improve step, the filtered dataset is used to fine-tune the policy. Both steps are repeated, Improve step is repeated more frequently to amortise the dataset creation cost.

Figure 2 ReST algorithm.

Reinforced Self-Training Algorithm

Grow step (data generation): create an augmented dataset D_g by sampling many output sequences from the current policy π_{θ}

i.e.
$$\mathbf{y} \sim \pi_{\theta}(\mathbf{y}|\mathbf{x})$$
 for $\mathbf{x} \sim \mathcal{D}$

Then score the new dataset with a reward function R(x, y).

Improve step (policy improvement): use the dataset D_g to fine-tune the policy π_{θ} .

Define a filtering function that t includes only samples with rewards higher than a certain threshold

$$F(\mathbf{x},\mathbf{y};\tau)=\mathbb{1}_{R(\mathbf{x},\mathbf{y})>\tau}.$$

Then finetune the current policy with an offline RL loss on the filtered data

$$J(\theta) = \mathbb{E}_{(x,y)\sim \mathcal{D}_g} \left[F(x,y;\tau) \, \mathcal{L}(x,y;\theta) \right].$$

Experiments

■ Task: Translation

Discussion

Non-static Environment

Bai Y, Jones A, Ndousse K, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback[J]. arXiv preprint arXiv:2204.05862, 2022.

Future Direction

■ 给定人工标注的budget,如何设计整个训练过程?